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Abstract
Using adiabatic expansions formalism, upper bounds for inter-band transitions
for Bloch electrons in slowly varying in time electric fields are obtained. These
bounds imply the validity of one-band approximation on long time scales.

PACS numbers: 73.22.Dj, 02.30.Tb, 02.90.+p

1. Introduction

This paper is devoted to the generalization of the main result in [1] concerning the smallness
of the inter-band transitions for homogeneous time-independent external electric fields to
slowly time-dependent electric fields. The study of Bloch electrons in a time-independent
electric field has a long and distinguished history. The subject is as old as the quantum
theory of solids (see, e.g. [2] for an extensive discussion) but, as the problem of the inter-band
transitions is concerned, the real story started with the papers of Wannier [3, 4] who argued
that in the presence of a weak homogeneous time-independent electric field the energy bands
of the crystal are ‘deformed’ and there are no inter-band transitions between the deformed
bands. Moreover, the Hamiltonian restricted to a simple deformed band consists of a ladder
of discrete eigenvalues (Stark–Wannier ladder). Wannier claims were challenged by Zak [5]
on the ground that in the presence of arbitrarily weak field the spectrum becomes continuous
so Stark–Wannier ladders of bound states cannot exist and indeed, it has been rigorously
proved (see, e.g. [6, 7]) that for sufficiently regular periodic potentials (for singular, e.g. δ-like
potentials, the situation might be different; see [8, 9] and the references therein) the spectrum
is absolutely continuous in the presence of a weak homogeneous time-independent electric
field so, if Stark–Wannier ladders exist, they consist of resonances. The issue remained
controversial for decades and eventually settled down in the affirmative at the rigorous level
by using powerful mathematical tools (for references and a detailed discussion, see sections
IA, IV and VIA in [2]). One of the key steps was the proof in [1] that one can define
recurrently deformed bands for which the inter-band transitions are smaller than any power
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of the electric field strength. In the time-independent form, the expansion method in [1] has
been considerably extended in [10, 11]. Considered initially as an interesting but academic
problem, the existence of Stark–Wannier ladders of resonances was experimentally proved
after the invention of superlattices (see [12] and the references therein) and even more, found
technological applications (see, e.g. [13]).

Since the time-independent electric fields are (ideal) limits of slowly varying in time
electric fields it is natural to try to extend the whole analysis to slowly varying fields. At
the heuristic level one expects, by an adiabatic argument, that the inter-band transitions are
still small and one can hope to prove the same type of result about the existence of almost
invariant deformed bands. Such a generalization was conjectured already in [1] and indeed, in
[14, 15] we developed a similar theory as in the time-independent case up to the second order.
Unfortunately, for higher orders the computations become unmanageably complicated.

In this paper, we shall develop a different procedure based on the adiabatic expansion in
[16] which allows us to push the construction of the deformed bands for slowly varying in
time electric fields to an arbitrary order.

The content of the paper is as follows: section 2 contains a brief review of the result
in [1] about the time-independent case, the description of the problem and the main result.
Section 3 contains the construction of the orthogonal projection on the subspaces describing
the deformed bands. Finally, section 4 contains the proofs.

2. The problem and the main result

We begin with a short review of the main result in [1]. For simplicity we shall treat the
one-dimensional case, but the results are valid for arbitrary dimensions.

The Hamiltonian describing one electron subjected to a periodic potential and to a
perturbation given by a homogeneous time-independent electric field E is

Hε = H0 + εX0, (2.1)

where

ε = eE,

H0 = − 1

2m

d2

dx2
+ V (x), h̄ = 1,

V (x + na) = V (x), (2.2)

(X0f )(x) = xf (x)

and a is the lattice constant.
The spectrum of H0, σ (H0) = σ0, is supposed to have at least one isolated band σ 0

0
separated by the rest of the spectrum

σ0 = σ 0
0 ∪ σ 1

0 , dist
(
σ 0

0 , σ 1
0

) = d > 0.

The mathematical difficulty of the problem comes from the fact that even for low values
of the electric field E, the potential energy goes to infinity at large distances and the ordinary
perturbation theory cannot be applied. The Hamiltonian of the perturbed system can be written
in the following form:

Hε = P0H
εP0 + (1 − P0)H

ε(1 − P0) + (P0H
ε(1 − P0) + h.c.) ,

where P0 is the orthogonal projection on the subspaces of states corresponding to the isolated
band σ 0

0 of H0. As already remarked by Callaway [17, 18], the one-band Hamiltonian P0H
εP0

has a discrete spectrum called the Stark–Wannier ladder of the form α + εam, where α is a
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constant, a is the lattice constant and m is an integer. As for in band dynamics, the electron
is not continuous accelerated, but will undergo a periodic motion in k-space caused by the
Bragg reflections at the boundary of the Brillouin zone, having the period T = 2π

εa
. This

oscillatory motion in k-space, accompanied by a periodic motion in the real space is termed
Bloch oscillations. The main issue was whether or not this picture is washed out by the
inter-band coupling (P0H

ε(1 − P0) + h.c.). Wannier [3, 4] argued that one can redefine the
bands of H0 so that the one-band Hamiltonian

P εHεP ε,

where P ε is the orthogonal projection on the subspace of states corresponding to a deformed
band, has again a discrete spectrum and the non-diagonal part vanishes, P εHε(1 − P ε) +
h.c. = 0, i.e. the deformed bands are ‘closed’ under the dynamics given by Hε. Unfortunately,
as discussed in the introduction, the existence of closed bands is ruled out by the fact that the
spectrum of Hε is absolutely continuous.

The main result in [1] is a recurrent rigorous construction of deformed bands σn
0 so that

the inter-band coupling although nonzero are small, i.e. if P ε
n is the orthogonal projection on

the subspace of states corresponding to the deformed band, then

P ε
n Hε

(
1 − P ε

n

)
is of the order εn+1, n = 1, 2, . . .. This implies that

γn(ε, t) = ∥∥(
1 − P ε

n

)
e−iHεtP ε

n

∥∥ � bnε
n+1t. (2.3)

Taking into account that 1 − γn(ε, t)
2 is a lower bound for the probability of finding at time t

the electron in a state corresponding to σn
0 if at t = 0 the electron is with probability one in

a state corresponding to σn
0 , it follows that for states corresponding to σn

0 and time scales of
order t � ε−n, the dynamics generated by the full Hamiltonian Hε is well approximated by
the dynamics generated by the one-band Hamiltonian P ε

n HεP ε
n .

Coming back to our time-dependent electric field problem, the Hamiltonian of the system
is

Hε,ω(t) = H0 + εX0F(ωt), (2.4)

with F(u) and all its derivatives F (n)(u) bounded. The case F(u) = 1 is the one discussed
above.

Heuristically, it is expected by an adiabatic argument that for small ω the transitions
caused by the time dependence of the electric field are still small and one hope the same type
of result. More precisely, if Uε,ω(t) is the solution of the Schrödinger equation

i
dUε,ω(t)

dt
= Hε,ω(t)Uε,ω(t), (2.5)

we are looking for an operator P ε,ω
n (t), n = 0, 1, 2, . . . , P

ε,ω
0 (t) = P0, so that the inter-band

transitions be bounded by

γn(ε, ω, t) = ∥∥(
1 − P ε,ω

n (t)
)
Uε,ω(t)P ε,ω

n (t)
∥∥ � tε

n∑
k=0

Ck,nε
n−kωk. (2.6)

A recurrent construction of P ε,ω
n (t) such that (2.6) holds true is the main result of this

paper.
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We conclude this section with a few remarks.

(i) As expected, in the limit ω → 0 (2.6) reduces to (2.3).
(ii) As already said in the introduction, in [14, 15] we developed for the above Hamiltonian

(2.4) a similar theory as in the time-independent case up to the second order. More
exactly, we redefined the deformed bands of H0 and for these deformed bands, in the
second-order theory the inter-band transitions are bounded by

γ1(ε, ω, t) � (C0,1ε
2 + C1,1ε · ω)|t |. (2.7)

The recurrent procedure was not developed further to an arbitrary order n, the higher order
construction implying very laborious calculations.

(iii) P ε,ω
n (t) is constructed out of Hε,ω(t) and its derivatives up to an order n and the constants

Cα,n can be, at least in principle, explicitly estimated in terms of Hε,ω(t) and its derivatives
up to an order n + 1.

(iv) From the physical point of view, it is important to find the values of E and ω for which
the inter-band transitions are still small on the relevant time scales. For the problem at
hand, the relevant time scale is the period of Bloch oscillations T = 2πh̄

eEa
. The estimations

of Ck,n are very laborious and a detailed analysis will be given elsewhere. Here we give
only the results for n = 1. The case ω = 0 (i.e. C0,1) has already been considered in
[19] and the result is that for typical lattice constants and band gaps for real crystals
(a ∼ 10−9 m, d ∼ 1eV):

γ1(ε, 0, T ) � 1 as far as E � 107 V m−1.

Estimations similar to those in [19] leads to

C1,1 ∼ 1012 m J−1,

which implies that the inter-band transitions are small as far as

E � 107 V m−1, ω � 1012 s−1. (2.8)

From (2.8) it follows that the one-band approximation can be safely used under the usual
experimental conditions.
Let us finally remark that the standard criterion for the validity of the adiabatic
approximation is useless here since it involves matrix elements of the unbounded operator
d
dt

(X0F(ωt)).
(v) Summing up, in both cases: the time-independent electric field case [1], as well as in

the time-dependent case, the smallness of inter-band transitions implies the validity of
the one-band approximation on long time scales. However, since both Hε,ω and P ε,ω

n

depend on time, the analysis of the one-band dynamics is more complicated than in the
time-independent electric field case [20] and is deferred to a future publication.

3. Construction of P ε
n

,ω(t)

In the following, we shall use a procedure based on the adiabatic expansion theorem developed
in [16].

Unfortunately, the Hamiltonian of the problem (2.4) is not of an adiabatic type. Moreover,
in this problem we are dealing with two small parameters ε and ω.

If we scale

s = εt; ω = εl; l − parameter,

4
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the Schrödinger equation becomes

iε
dUε(s, l)

ds
= Hε(s, l)Uε(s, l). (3.1)

Defining

U0(s, l) ≡ e−iX0G(s,l), (3.2)

where

G(s, l) =
∫ s

0
F(lu) du (3.3)

and

Wε(s, l) ≡ U ∗
0 (s, l)Uε(s, l), (3.4)

the Schrödinger equation becomes of the adiabatic form [16], but with an additional parameter
l:

iε
dWε(s, l)

ds
= H̃0(s, l)W

ε(s, l), (3.5)

where

H̃0(s, l) = U ∗
0 (s, l)H0U0(s, l) (3.6)

has the same spectrum as H0.
Now, in terms of Wε(s, l) the inter-band transitions (2.6) become [14]

γn(ε, ω, t) = γn(ε, s, l) ≡ ∥∥(
1 − P̃ ε

n (s, l)
)
Wε(s, l)P̃ ε

n (0, l)
∥∥, (3.7)

where

P̃ ε
n (s, l) = U ∗

0 (s, l)P ε,ω
n (t)U0(s, l) (3.8)

have to be constructed. Once P̃ ε
n (s, l) is constructed, P ε,ω

n (t) are given by (3.8). At fixed l, the
construction of P̃ ε

n (s, l) follows closely the method in [16] but emphasizing the l dependence.
We define the sequence Ẽj (s, l) by the recurrence formula (see lemma 1 in [16])

Ẽ0(s, l) = P̃0(s, l) = i

2π

∮
�

1

H̃0(s, l) − z
dz = i

2π

∮
�

R̃0(s, l; z) dz, (3.9)

Ẽj (s, l) = − 1

2π

∮
�

R̃0(s, l; z)
[
(1 − P̃0(s, l))Ẽ

(1)
j−1(s, l)P̃0(s, l) − h.c.

]
R̃0(s, l; z) dz

+ S̃j (s, l) − 2P̃0(s, l)̃Sj (s, l)P̃0(s, l), (3.10)

where

S̃j (s, l) =
j−1∑
m=1

Ẽm(s, l)Ẽj−m(s, l), Ẽ
(n)
j (s, l) = dnẼj (s, l)

dsn
(3.11)

and � is a contour enclosing the isolated band σ 0
0 . Ẽj (s, l) satisfy

Ẽj (s, l) =
j∑

m=0

Ẽm(s, l)Ẽj−m(s, l), (3.12)

iẼ(1)
j−1(s, l) = [H̃0(s, l), Ẽj (s, l)]. (3.13)

As a consequence of (3.12), (3.13), T ε
n (s, l), n = 0, 1, 2, . . . defined by

T ε
n (s, l) =

n∑
j=0

Ẽj (s, l)ε
j (3.14)

5



J. Phys. A: Math. Theor. 41 (2008) 025304 A Nenciu

have the properties

iεT ε(1)
n (s, l) − [

H̃0(s, l), T
ε
n (s, l)

] = iẼ(1)
n εn+1, (3.15)∥∥(

T ε
n (s, l)

)2 − T ε
n (s, l)

∥∥ ∼ O(εn+1). (3.16)

Finally, following [16, 21] we construct the projection operators P̃ ε
n (s, l) corresponding

to almost invariant subspaces describing the deformed bands:

P̃ ε
n (s, l) = i

2π

∫
|z−1|= 1

2

(
T ε

n (s, l) − z
)−1

dz

= T ε
n (s, l) +

(
T ε

n (s, l) − 1

2

) {[
1 + 4

((
T ε

n (s, l)
)2 − T ε

n (s, l)
)]− 1

2 − 1
}
. (3.17)

Due to (3.16), for sufficiently small ε, 4
∥∥(

T ε
n (s, l)

)2 − T ε
n (s, l)

∥∥ < 1 and then, in the
formula above the square root has to be understood as

(1 + A)−
1
2 = 1 +

∞∑
p=1

(−1)p
(2p − 1)!

(2pp!)2
Ap.

The crucial property of P̃ ε
n (s, l) is

iεP̃ ε(1)
n (s, l) − [

H̃0(s, l), P̃
ε
n (s, l)

]
= εn+1 1

2π

∫
|z−1|= 1

2

(
T ε

n (s, l) − z
)−1

Ẽ(1)
n (s, l)

(
T ε

n (s, l) − z
)−1

dz. (3.18)

Using the fact that
(
1− P̃ ε

n (s, l)
)
P̃ ε

n (s, l) = 0 and that ‖(1− P̃ ε
n (s, l)

)‖ = ‖Wε(s, l)‖ = 1
the inter-band transitions (3.7) can be rewritten as

γn(ε, s, l) = ∥∥(
1 − P̃ ε

n (s, l)
)
Wε(s, l)P̃ ε

n (0, l)Wε∗(s, l)Wε(s, l)
∥∥

= ∥∥(
1 − P̃ ε

n (s, l)
) [−P̃ ε

n (s, l) + Wε(s, l)P̃ ε
n (0, l)Wε∗(s, l)

]
Wε(s, l)

∥∥
�

∣∣P̃ ε
n (s, l) − Wε(s, l)P̃ ε

n (0, l)Wε∗(s, l)
∥∥. (3.19)

It remains to estimate the last norm in (3.19). The main point is that in order to obtain
estimations of the form (2.6) one has to control the l dependence.

4. Proofs

We begin with a preparatory result.

Lemma 4.1.∥∥P̃ ε
n (s, l) − Wε(s, l)P̃ ε

n (0, l)Wε∗(s, l)
∥∥ � 1

ε

∫ s

0

∥∥∥∥iε
dP̃ ε

n (u, l)

du
− [

H̃0(u, l), P̃ ε
n (u, l)

]∥∥∥∥ du.

(4.1)
Proof. The proof is standard [16, 22], but we give it for completeness. Rewrite the lhs of (4.1)
as

P̃ ε
n (s, l) − Wε(s, l)P̃ ε

n (0, l)Wε	(s, l)

= Wε(s, l)
[
Wε	(s, l)P̃ ε

n (s, l)Wε(s, l) − P̃ ε
n (0, l)

]
Wε	(s, l). �

Using (3.5), the equation satisfied by the function

f (s, l) = Wε	(s, l)P̃ ε
n (s, l)Wε(s, l) − P̃ ε

n (0, l)

6
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is

iε
df (s, l)

ds
= Wε∗(s, l)

{
iε

dP̃ ε
n (s, l)

ds
− [

H̃0(s, l), P̃
ε
n (s, l)

]}
Wε(s, l).

The solution of this equation is

f (s, l) − f (0, l) = 1

iε

∫ s

0
Wε∗(u, l)

{
iε

dP̃ ε
n (u, l)

ds
− [

H̃0(u, l), P̃ ε
n (u, l)

]}
Wε(u, l) du.

Since Wε(s, l) is unitary and f (0, l) = 0, lemma 4.1 results immediately. As a result, (3.19)
becomes

γn(ε, s, l) � 1

ε

∫ s

0

∥∥∥∥iε
dP̃ ε

n (u, l)

du
− [

H̃0(u, l), P̃ ε
n (u, l)

]∥∥∥∥ du. (4.2)

Now from (4.2), the property (3.18) of the projection operators P̃ ε
n (s, l) and the fact that

[16, 21] sup|z−1|= 1
2

∥∥(
T

ε

n (s, l) − z
)−1∥∥ is bounded uniformly in s, it results

γn(ε, s, l) � const · εn sup
0�u�s

∥∥Ẽ(1)
n (u, l)

∥∥ · s (4.3)

and what is left is to obtain estimations of
∥∥Ẽ(1)

n (u, l)
∥∥.

In what follows, R̃0(s, l; z) = (H̃0(s, l) − z)−1, R0(z) = (H0 − z)−1 and � is a contour
enclosing σ 0

0 . We shall first prove the following lemma.

Lemma 4.2.

sup
s∈R,z∈�

∥∥R̃
(n)
0 (s, l; z)

∥∥ �
n−1∑
l=0

Cll
l . (4.4)

Proof. For n = 1, 2, 3, by a direct calculation using (3.2), (3.3) and (3.6), one obtains

R̃
(1)
0 (s, l; z) = iF(ls)U ∗

0 (s, l) [X0, R0(z)] U0(s, l),

R̃
(2)
0 (s, l; z) = ilF (1)(ls)U ∗

0 (s, l) [X0, R0(z)] U0(s, l)

+ F 2(ls)U ∗
0 (s, l) [[X0, R0(z)] , X0] U0(s, l),

R̃
(3)
0 (s, l; z) = il2F (2)(ls)U ∗

0 (s, l) [X0, R0(z)] U0(s, l)

+ lF (1)(ls)F (ls)U ∗
0 (s, l) [[X0, R0(z)] , X0] U0(s, l)

− iF 3(ls)U ∗
0 [[[X0, R0(z)] , X0] , X0] .

In general, one can see recurrently that R̃
(n)
0 (s, l) is a polynomial of degree n − 1 in l,

whose coefficients are the products of Fk(ls), U ∗
0 (s, l), U0(s, l) and multiple commutators

[[. . . [R0(z),X0], . . . , X0]]. Since all these factors (for the multiple commutators, see, e.g.
[1, 23]) are uniformly bounded in l, s and z, the proof of lemma is finished. �

Finally, the following lemma gives the necessary estimate of
∥∥Ẽ(1)

n (u, l)
∥∥.

Lemma 4.3.

‖Ẽj (s, l)‖ �
j−1∑
l=0

el,j l
l, (4.5)

∥∥Ẽ
(1)
j (s, l)

∥∥ �
j∑

l=0

fl,j l
l . (4.6)

7
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Proof. We shall prove by induction that Ẽj (s, l) is a finite sum of terms, each term is a
multiple integral on �, the integrand being

m∏
k=1

R̃
(αk)
0 (s, l; z), (4.7)

where

αk � 0

and ∑
k

αk = j.

In addition, Ẽ
(1)
j (s, l) have the same form with∑

k

αk = j + 1.

For j = 0, this is trivial since (see (3.9))

Ẽ0(s, l) = P̃0(s, l) = i

2π

∮
�

R̃0(s, l; z) dz

and

Ẽ
(1)
0 (s, l) = i

2π

∮
�

dR̃0(s, l; z)

ds
dz.

Suppose that Ẽj (s, l) satisfies the induction hypothesis and we want to prove the same is
true for j + 1.

From (3.10), Ẽj+1(s, l) contains two types of terms.

• The first type is a multiple integral of terms containing Ẽ
(1)
j (s, l) and resolvents of H̃0(s, l).

According to the induction hypothesis, the terms are of the form (4.7), where∑
k

αk = j + 1.

• The second type of terms contain S̃j+1(s, l):

S̃j+1(s, l) =
j∑

m=1

Ẽm(s, l)Ẽj+1−m(s, l)

and again from the induction hypothesis they are of the form (4.7) with∑
k

αk = m + j + 1 − m = j + 1.

It results that Ẽj+1 is a finite sum of terms, each term being a multiple integral on �, with
the integrant of the form

m∏
k=1

R̃
(αk)
0 (s, l; z)

with

αk � 0;
∑

k

αk = j + 1.

8
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By the Leibnitz rule, the derivative Ẽ
(1)
j+1(s, l) is of the same form, but with∑

k

αk = j + 2.

This and lemma 4.2 give (4.5) and (4.6) which finishes the proof. �

Plugging (4.6) into (4.3), one obtains that

γn(ε, s, l) � εns

n∑
k=0

Ck,nl
k

and going back to the variables t and taking into account that l = ω
ε

it results

γn(ε, ω, t) � εt

n∑
k=0

Ck,nε
n−kωk

which is the desired result.
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[12] Rosam B, Meinhold D, Löser F, Lyssenko V G, Glutsch S, Bechstedt F, Rossi F, Köhler K and Leo K 2001
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